
Tractor Hacking
TractorHacking.github.io

Tim Letz ■ Andrew McGuan ■ AJ Fite

Objectives
This group intends to learn more about the computer architecture of John Deere tractors
in an attempt to avoid their software restrictions. Our main objectives are:
● Obtain an engine control unit (ECU), which acts as the base of all communications on a

tractor, learn about its architecture, and have it running in a benchtop setup
● Gain access to a live John Deere tractor and tap into its communication lines, to learn

about the type of messages being sent during operation and periods of error
● Document our process on a publicly available webpage, so that others can pick up our

work and continue where we left off

Project Description
John Deere farm equipment is used by farmers worldwide. Unfortunately the company is
overly restrictive on the maintenance they allow the machines’ owners to carry out. The
company has imposed software checks that require a mechanic from a John Deere
specific dealer, using equipment made available only to these dealers, to diagnose and
fix errors. The errors have the potential to shut down the entire machine, even if it is
isolated to a small or unimportant part of the tractor. If an owner tries to replace a faulty
part without John Deere Software, the tractor can reject the part until a technician verifies
the part. This is extremely limiting for the equipment owners, because it increases the
downtime of the machinery, and transport and repair costs can be expensive.

Technical Detail
John Deere equipment conforms to a CAN protocol set by the Society of Automotive
Engineers (SAE) named J1939. This is a standard that specifies the contents of the CAN
message’s ID, as well as what type of data is sent under specific ID numbers.

The above image is a breakdown of the 29-bit CAN ID sent with each message. The
most important portion of this message is bits 8 through 23, which combine to form the
parameter group number (PGN). J1939 specifies what data should be sent under each
specific PGN. Shown below is a breakdown of the data sent under the PGN 0xF004.

J1939 specifies what data is being sent at each location in the CAN data region. This
includes a description, the data size, and the byte offset in the data packet. This
information is incredibly helpful in decoding the data gathered from the tractor, because it
allowed us to look for specific IDs and observe the numbers changing at a specific point
in the packet.

Data Analysis
The data we captured from the scope was stored in spreadsheets, in CAN format -
further parsing and processing would have to be done on our own end - particularly,
parsing these packets as according to the J1939 standard. To do so, we created a script
that would read out data from these spreadsheets, and organize the data by various
criteria. Through this, we were able to isolate which packets were John Deere-specific,
and establish where to investigate further.

Next Steps
The scope of our project has gotten a lot more concrete from the exploratory phase that
our project started out in, and has definitely exceeded the time budget we’re allotted for a
single capstone. iFixit still plans on pursuing this topic in future years, and so our existing
groundwork would be a great boon to future teams that will pick up this project and
expand on our work. Much of our time was spent in research, looking up how to
approach our task. With this already out of the way, groups in the future will be able to
progress in a more straightforward fashion with the protocols in use highlighted and the
equipment needed for analysis already at hand. On our website, we describe both
packets we recognize from our captures, and our references used to define our analyses.
We will hand our existing work off to iFixit for archival and future use.

Design

The tractor used for live tests is a John Deere 5055E model, which is a fairly simple
open-cab tractor. As a result, the computer architecture inside it is not incredibly complex.
The tractor has a CAN port to which we connected our MSO-X 2012A Keysight
oscilloscope. This scope is able to identify a message sent in the CAN format, break it up
into its ID and data components, and save ten seconds of this data to a flashdrive.

17

